祭出100亿参数的 参数量翻了10倍!Meta AI 新SEER 为元宇宙铺路 (祭献亿万回报)

文章编号:46035 资讯动态 2024-12-09 AI Meta 自监督学习 SEER

参数量翻了10倍!Meta AI 祭出100亿参数的“新SEER”,为元宇宙铺路

去年3月提出的10亿参数自监督模型 SEER (SElf-supERvised)又取得了新突破:新的 SEER 参数量翻了10倍,达到了100亿参数,可以取得更优秀、更公平的性能表现!

以下我们暂且称新的 SEER 模型为“SEER 10B”(一个牛逼不足以形容 Meta AI 在行动上落实自监督的野心,手动狗头)。

根据 Meta AI 的团队介绍,他们将 SEER 10B 模型在50+个基准与多个不同未标记数据集上进行了测试。其中,SEER 10B 不仅在 ImageNet 上取得了高达 85.8% 的准确率(排名第一),与原先只有 10 亿参数量的 SEER (84.2%)相比性能提升了 1.6%。

此外,SEER 10B 在性别、肤色、年龄等三个公平基准上获得了更出色的识别效果,明显优于监督模型。

参数量翻了10倍!Meta AI 祭出100亿参数的“新SEER”,为元宇宙铺路

留意 Meta AI 的朋友不难发现:最近,Meta AI 首席科学家 Yann LeCun 与 Meta 创始人扎克伯格在公开发言中坚持强调自监督学习的优越性。上周, LeCun还提到自监督与世界模型 ,将 AI 最终能学会像人类一样学习与推理的希望寄托在这两个方法上。

所谓“自监督学习”,就是 AI 系统可以直接从文本、图像或其他类型的无标记数据中直接学习,主要针对解决监督学习所需的海量标记数据问题,因为在现实研究中,要获取大量的标记数据难度极高。

参数量翻了10倍!Meta AI 祭出100亿参数的“新SEER”,为元宇宙铺路

LeCun一直认为,自监督学习是构建具有背景知识或“常识”的机器、以解决远远超出当今 AI 任务的最有前景的方法之一。

但同时,也有读者评价 Meta 倡导的自监督本质上不过是强化学习。不久前,“怼王”Jürgen Schmidhuber 也发表文章,称“all You Need Is Supervised Learning”,重申监督学习在突破 AI 瓶颈中扮演的重要角色。

勿论其他,那么,Meta AI 在自监督学习上有哪些研究实践?参数量翻了10倍的 SEER 模型又有哪些新花样?一起来看看~



SEER 从 1B 到 10B

去年3月初,Meta AI(原 Facebook AI)发布了10亿参数自监督模型 SEER,曾在 AI 领域引起广泛关注。

据 Meta 介绍,这是他们在计算机视觉领域所取得的第一个基于自监督学习方法的成果:它可以直接从互联网的任一随机图像集合中学习,无需详细的数据管理和标记,随后直接输出图像嵌入。

经过一年的提升,如今 Meta 的研究团队将 SEER 的参数量扩大了10倍,在原有的基础上取得了更出色的性能表现:

除了可以在无标记数据上直接学习,SEER 还可以提取更高质量的视觉特征,以及发现现实世界大规模图像数据集中的显著信息,方式与人类分析所观察事物之间的关系的方式来了解世界般相似。

注意:这些数据集的覆盖范围是全球数万亿张随机、未经处理的图像。

参数量翻了10倍!Meta AI 祭出100亿参数的“新SEER”,为元宇宙铺路

据悉,扩大了10倍密集参数后的 SEER 是当前规模最大的密集计算机视觉模型。

他们在 50 多个基准上检验了 SEER 模型的性能,包括公平性、鲁棒性、细粒度识别,还在医学成像、卫星图像和光学字符识别 (OCR) 等领域的多个图像分类数据集上进行了实验。

不难想象,参数量翻倍后的 SEER 10B模型在一些挑战性较高的任务上也取得了更优秀的表现。

首先,100亿 SEER 在 ImageNet 上获得了高达 85.8% 的准确率,排名第一!

参数量翻了10倍!Meta AI 祭出100亿参数的“新SEER”,为元宇宙铺路

除了在标准计算机视觉基准上的优秀表现外,SEER还擅长处理高难度任务,并提高了对域外泛化的鲁棒性。

例如,它可以正确识别素描图和艺术画中的动物,还可以搞定常见的图像问题,例如掩装、模糊、遮挡、运动和怪异视角拍摄等。

SEER 10B 模型还能够捕获大量随机的、未经过滤的互联网图像中存在的显着信息,甚至跨越不同的地理和语言概念。

例如,即使该模型仅在没有位置信息或其他元数据的图像上进行训练,它也能够将全球多种语言的相同概念组合在一起。例如,将来自世界各地的“婚礼”概念嵌入到模型的特征空间中。

参数量翻了10倍!Meta AI 祭出100亿参数的“新SEER”,为元宇宙铺路

除了性能的突破,Meta AI 还称:SEER 10B 模型能取得更公平的效果。

他们使用 Meta 新开源的 Casual Conversations 数据集以及他们最近为CV模型提出的新公平基准对 SEER 进行测试,发现与较小的 SEER 模型以及 ImageNet 训练的监督和自监督模型相比,SEER 10B 模型能更准确地识别这些社会成员属性,适用于不同性别、肤色和年龄的人。

参数量翻了10倍!Meta AI 祭出100亿参数的“新SEER”,为元宇宙铺路

图注:该图使用 Casual Conversations 数据集显示了性别检索的准确性

此外,他们使用 Casual Conversations 数据集评估了模型标签的错误率,例如在给定特定的人像中预测“非人类”或“犯罪”等标签。研究表明,SEER 10B 问题不大,但在 ImageNet 上训练的监督模型却产生了大量的错误关联。

参数量翻了10倍!Meta AI 祭出100亿参数的“新SEER”,为元宇宙铺路

图注:该图显示了 SEER 模型对不同人群的关联预测错误率

SEER 10B模型还不仅适用于欧美国家的图像示例,还适用于全球各地收入水平中下的地区,以前所未有的精度对图像进行地理定位。

通过在 Gapminder 的 Dollar Street 数据集(该数据集收集了世界各地家庭中的物体图像及家庭收入信息)上实验,他们还发现,SEER 10B模型对识别全球中低收入家庭与非西方地区家庭的性能有了大幅提升,且明显优于10亿参数的 SEER 与其他监督方法。

参数量翻了10倍!Meta AI 祭出100亿参数的“新SEER”,为元宇宙铺路

图注:在 Meta AI 于 2020 年创建的数据集 Hateful Memes 上检测多模态(图像 + 文本)仇恨言论时,SEER 10B 的表现也优于受监督的 ImageNet 训练模型 2 个百分点。




对抗性攻击

Meta AI 的研究团队表示,秉着“负责任地开发 AI 系统”的原则,他们还对 SEER 10B模型进行了对抗性攻击,以保护训练数据的隐私安全。

他们在 Meta 的开源工具 Privacy Linter 上进行了测试,发现攻击的准确度(50.02%)仅略高于完全随机猜测,而随机攻击的准确度对于相同大小的训练集,准确度为 50%。

此外,他们计算了不同召回级别的精度,以确保没有训练图像在低召回级别中暴露——这种情况可能发生在所有得分最高的样本都属于训练集时;同时,精度低于 50.15% 适用于所有级别的召回(包括最低级别)。

参数量翻了10倍!Meta AI 祭出100亿参数的“新SEER”,为元宇宙铺路

图注:由于 SEER 不依赖于标记数据集,所以它能够在一组比 ImageNet 的地理多样性更优的示例上训练模型

为了测试模型在对抗性攻击中的鲁棒性,他们将模型用于识别模糊、插入、已被裁剪或经过其他编辑的扭曲图像。其中,SEER 10B在 CopyDays 基准测试中实现了 90.6% 的平均精度,提高了 5.1%,超越了之前的最佳结果。

此外,SEER 在域外鲁棒性基准上优于在 ImageNet 上训练的最先进的自监督模型,并且随着规模的增大,鲁棒性也不断提高。

参数量翻了10倍!Meta AI 祭出100亿参数的“新SEER”,为元宇宙铺路

目前,SEER 10B 的模型权重、实现细节与技术文档都已开放:

参数量翻了10倍!Meta AI 祭出100亿参数的“新SEER”,为元宇宙铺路

项目地址:




自监督学习与元宇宙

自监督学习是 Meta AI 首席科学家 Yann LeCun 近年来一直力推的研究方向。早在2018年Lecun就表示,人工智能的下一个发展方向可能是放弃深度学习的所有概率技巧,转而掌握一系列转移能量值的方法。与“常规”的深度学习标记训练方法相比,这一方式无需创建大量带标签的数据集,其基本设想是通过获取一些丰富的原始数据(如大量Facebook Live视频或Instagram照片)并“喂”给机器进行训练,训练的目标是达到能量值越小越好(即预测更为准确,与现实之间实现更好的兼容性)。

参数量翻了10倍!Meta AI 祭出100亿参数的“新SEER”,为元宇宙铺路

基于能量的学习早就有之。在AI研究中,“能量函数”是一个上世纪80年代一度流行的“上古”概念,由美国生物物理学家霍普菲尔德(John Hopfield)发明的“霍普菲尔德神经网络”(HNN)引入并普及。Lecun认为,监督学习无法获得像人类一样可以泛化的智能,当 AI 系统不再需要监督学习时,下一次 AI 革命就会到来,而基于能量的学习正是“减少监督”的有效实现方式。

Lecun的这一思路,在他上周接受 IEEE Spectrum 的访谈中也可见一斑。他认为AI想要突破现在的瓶颈,必须让机器学习世界模型,从而能够填补缺失的信息,预测将要发生的事情,并预测行动的影响。这种学习范式与预测架构的不同,或许也是不久前Lecun对OpenAI创始人Ilya Sutskever提出的“大型神经网络可能有意识”坚决说不的原因。

ecun的力推下,META围绕自监督模型取得了一系列的研究成果(例如最近推出的多模态自监督学习新架构deta2vec等)。 这种通过自监督学习“观察世界并学习”、最终实现像人类一样泛化的智能的学习方式,一方面可以最大程度利用META丰富的数据资源,同时也是META抢先打造元宇宙世界、加速数字世界与现实世界融合的重要技术手段。

Meta AI Research 团队也表示,计算机视觉的发展是构建元宇宙的重要步骤,而自监督视觉模型 SEER 的增强无疑为元宇宙的更上一层楼作了铺垫。

举例来说,如果要打造一幅能够帮你导航寻找钥匙或教你如何做饭的 AR 眼镜,那么就需要机器能够像人类一样理解视觉世界。这些机器不单单要能在堪萨斯州和日本京都的厨房中工作,还要在吉隆坡、北京、纽约等等世界各地的厨房中工作,这就需要机器能识别常见物体的多种模样。而 SEER 10B 在多种不同数据集中的强大性能为实现突破提供了可能。

参数量翻了10倍!Meta AI 祭出100亿参数的“新SEER”,为元宇宙铺路

原创文章,未经授权禁止转载。详情见 转载须知 。

参数量翻了10倍!Meta AI 祭出100亿参数的“新SEER”,为元宇宙铺路


本文地址: https://www.gpxz.com/article/f0b0997ee3b4a5cd05ff.html
全局中部横幅
全局中部横幅
链接提交

链接提交工具可实时向百度推送数据,创建并提交sitemap及提交未收录网页链接有助于百度发现并了解您网站上的网页和网站结构,加快抓取。

济宁剧院管理有限责任公司,济宁运河音乐厅,济宁声远舞台

济宁剧院管理有限责任公司,济宁运河音乐厅,济宁声远舞台济宁市运河文化广场主体楼即运河音乐厅。由苏州设计院设计的一座仿古建筑,是以公益性文化活动为主的综合性文化活动场所。

青岛海鲜酒店

青岛海上渔酒店(订餐电话:0532—85881188)位于市中心地段市南区江西路35号,交通便利,菜品色味俱佳,配置专用停车场,青岛海鲜酒店,市南区海鲜酒店,就去青岛海上渔酒店!

米哈游

米哈游成立于2012年,是一家深耕动漫文化的科技公司。米哈游多年来秉持技术自主创新,坚持走原创精品之路,围绕原创IP打造了涵盖漫画、动画、游戏、音乐、小说及动漫周边的全产业链。

广州公司注册

正穗广州公司注册网是广州专业的公司注册、企业注册办理的一站式服务公司,专业为您提供广州公司注册、企业注册、外资公司注册代理等公司注册代办服务。

河南省黄泛区实业集团有限公司

河南省黄泛区实业集团有限公司河南省黄泛区实业集团有限公司产业涉及种植、养殖、种子繁育加工、农业综合服务、农副产品加工、机械加工、建筑和房地产开发、冷藏贸易、商超物流、金融服务等

光伏设计

浙江恒欣设计集团股份有限公司安徽分公司主要开展光伏设计、加固设计,提供荷载评估报告,于2013年成立,成立以来在全国各地做出了卓越的成绩,拥有一支具有高学历、高职称、国家注册执业资格和富有合作精神的光伏设计、加固设计团队。

西安卓越标识科技有限公司

西安卓越标识科技有限公司不干胶标签生产制造10年,800多种标签品种,支持特种标签定制,专注为您提供标签应用整体解决方案。

内江威士凯电子有限公司

内江威士凯电子有限公司是一家专业生产高精密多层、特种板PCB、芯片封装框架产品的电子元器件研发、生产、销售企业.

咕噜管家官网

咕噜管家是一款私域营销工具,包含微活码、社群机器人、公众号助手、企微助手四大产品,帮助企业实现优质私域运营,形成拉新、留存、促活、转化、增长的闭环,助力企业营销效率提升。

沥青灌缝机

山东儒工机械制造有限公司专注小型机械设备生产,沥青灌缝机,小型压路机,划线机,凿毛铣刨机等系列设备厂家直销,质量好、价格低


全局底部横幅