信息瓶颈 再解读 携手 聚焦 信息压缩 MIT 理论 IBM (信息瓶颈算法)

深度学习的发展带给人工智能领域的影响可谓是革命性的,然而该领域目前还存在很多未解决的问题,其中就包括不可解释性等问题。而希伯来大学计算机科学家和神经学家Naftali Tishby 等人提出的「信息瓶颈」理论,则尝试来解决神经网络的一系列问题,自提出以来便一直受到 AI 界的广泛关注。IBM 研究院也开展相关研究来分析这一理论,以期能够解决神经网络中的某些问题,相关成果发表在 IBM 研究院官网博客上,雷锋网 AI 科技评论编译如下。

虽然对于神经网络理论的研究工作日趋增多,但我们对于深度学习的宏观行为理解仍存在许多不足之处。例如,训练期间由哪些因素驱动内部表征的演变、学习到的表征属性以及如何充分训练神经网络去处理信息等方面存在的问题,一直都没有得到解决。此外,我们对于神经网络的了解大多数都源于揣测,而缺乏实证。

「信息瓶颈」理论试图解决上述这些问题。作为 MIT- IBM Watson AI 实验室双方密切合作的成果,我们在 2019 年国际机器学习大会(ICML)会议论文「深度神经网络中信息流的评估」(Estimating Information Flow in Deep Neural Networks),从数学和经验的角度对「信息瓶颈」理论进行了分析,其中更是特别聚焦于其预测的「信息压缩」现象。

「信息瓶颈」理论(Schwartz-Ziv & Tishby 2017 年论文等,见参考文献)试图解释涉及信息压缩的神经网络泛化问题,这个概念是指在神经网络学习对输入编码时,输入 X 和隐藏层 T(图 1)之间的互信息在训练过程中迅速上升,之后在神经网络学习丢弃与任务无关的非关联信息(图 2)时,该互信息缓慢下降(压缩)。每一个连续的层都被视为在不断压缩输入。最终证明,这种淘汰掉无关信息的方式,可以使分类器的泛化效果更好,因为这样的话,当被给定一种新的此前从未见过的输入,神经网络仅仅提取出相关信息,而不会受到无关信息的误导。

聚焦「信息压缩」,IBM 携手 MIT 再解读「信息瓶颈」理论

图 1:深度神经网络的前馈(假设的)

聚焦「信息压缩」,IBM 携手 MIT 再解读「信息瓶颈」理论

图 2:信息瓶颈。图中显示了训练过程中 5 个隐藏层中互信息的轨迹

虽然某种程度上这是一个较为诱人的观点,但遗憾的是,当网络是确定性的时候,输入 X 和隐藏层 T 之间的互信息并不依赖于网络参数(而在实践中,几乎所有的神经网络都是确定性的)。为了解决这个问题,先前的工作通过对每个神经元进行分箱处理(量化)和互信息进行计算(成为分箱隐藏层的离散熵),得出互信息的估计值。图 3 表明该计算与分箱大小高度相关,从而证实它并没有对互信息进行计算。

聚焦「信息压缩」,IBM 携手 MIT 再解读「信息瓶颈」理论

图 3:分箱估计的不连续性

噪声神经网络与互信息评估

当网络是确定性的时候,互信息是非信息性的,而当网络是随机性的时候,互信息是富信息性的。因此,我们通过在每个神经元输出中添加高斯噪声 Z 来定义形成的噪声神经网络(图 4)。这种噪声同时存在于神经网络的训练和测试中,从而使相关的互信息评估变得有意义。在这种情况下,我们提出了一种有效的互信息评估方式,它能以极大极小最优速度收敛为真实的互信息(且不依赖于分箱)。

聚焦「信息压缩」,IBM 携手 MIT 再解读「信息瓶颈」理论

将聚类作为压缩的驱动因素

我们的论文通过将单神经元分类和噪声通道上的信息传输联系起来,能够开发出一个数学直觉,即信息压缩(在随机网络中严格观察或在确定性网络中使用分箱估计)通常都应该由内部表征聚类引起。具体来说就是,在隐藏表征 T 中,映射同一类 Y 的不同输入 X 的隐藏层与彼此越来越接近。

要从经验上评估这一点,可参考 Schwartz-Ziv、 Tishby 在其 2017 年一篇论文中提出的数据和模型,该模型使用具有双曲正切函数(tanh)激活的全连接 12-10-7-5-5-4-3-2 体系结构对 12 维输入进行二进制分类。图 5 显示了标准偏差 0.005(测试精度 97%)的加性噪声结果,说明了各训练期中互信息估计、训练/测试损失和不断演变的内部表征之间的关系。互信息的上升和下降对应着表征在每一层中的扩展或聚合程度。例如,当高斯函数开始沿着一条曲线彼此偏离时(参见顶部第 5 层隐藏表征的散点图),在 28 epoch 之前,互信息一直呈增长趋势;到 80 epoch 左右,它们开始聚合,互信息随之下降。随着训练的进行,饱和的双曲正切单元将高斯函数推到立方体的相反角落,进一步减少了互信息。

聚焦「信息压缩」,IBM 携手 MIT 再解读「信息瓶颈」理论

图 5:训练过程中的 I(X;Y) 压缩。最上面一行显示的是在选定 epochs 中隐藏表征的最终层的散点图,按颜色进行类标签编码

如图 6 所示,我们使用权重的正交规范化规则(Cisse 等人 2017 年论文),不仅可以消除这种压缩,实际上也改进了泛化。隐藏表征不再聚合在一起,这与信息压缩的缺失是直接对应的。我们在这方面进行了更多的实验,从而有力地证实了信息压缩是由聚类引起的。

聚焦「信息压缩」,IBM 携手 MIT 再解读「信息瓶颈」理论

图 6:使用正交规范化消除压缩

由聚类引起的「压缩」概念之所以重要,基于两个原因。首先,它揭开了「信息压缩」的神秘面纱,用一个更具体的公式取而代之。其次,它为直接研究聚类打开了大门,聚类可能不会遭遇源自与互信息估计相关的维数的极端「诅咒」(我们证明了样本复杂度在维数上呈指数级增长)。事实上,我们能够将聚类的若干(初步的)测量方法延展到针对 MNIST 扫描数字任务进行分类的全卷积神经网络上,从而在训练过程中观察到类似的「压缩」行为。

此外,与「信息瓶颈」理论相反,我们发现压缩对于泛化来说并不是必要的,不过,鼓励使用压缩(通过几何聚类)是否能够促进更好的泛化性能仍然是一个有待解决的问题。

参考文献:

[Shwartz-Ziv, R. and Tishby, N. Opening the black box of deep neural networks via information. arXiv:1703.00810, 2017]

[Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and Usunier, N. Parseval networks: Improving robustness to adversarial examples. In Proceedings of the InteRNAtional Conference on Machine Learning (ICML), 2017]

via:

原创文章,未经授权禁止转载。详情见 转载须知 。

聚焦「信息压缩」,IBM 携手 MIT 再解读「信息瓶颈」理论

全局中部横幅
公主小游戏,公主小游戏大全,4399公主小游戏全集,4399小游戏

4399公主小游戏大全收录了国内外公主小游戏、公主换装小游戏、公主化妆小游戏、公主小游戏下载、最新公主小游戏。好玩就拉朋友们一起来玩吧!

西西软件园

西西软件园是全新打造的个人上网安全,常用软件官方版,办公软件及编程开发等其它软件安全的下载站点,西西游戏网是集合大型单机游戏,模拟器游戏,游戏修改器下载,同时西西还是安卓游戏,安卓应用下载市场。

广州市宏创防伪科技有限公司

广州市宏创防伪科技有限公司成立于2019年,是一家提供产品防伪信息管理系统、防窜货物流管理系统、客户信息管理系统、进销存管理系统等完美解决方案的高科技企业。

河南成人教育网―大专,本科,专升本学历教育

河南成人教育网2022考前培训进行中,河南成人大专本科报名选择成人高考/自学考试,各地教学站全省成人大专本科招生!报名电话:18538030863!

小程序开发公司

昆山悦商信息科技有限公司专注于为企业提供移动互联网解决方案;公司的主营业务:微信小程序开发、外卖、社区团购、分销商城、分销系统、量身定制开发、原生android定制、opencv人脸识别项目、网站建设等互联网平台业务!

TDY75型电动滚筒,WD外装型电动滚筒

淄博惠城机械厂是集科研,制造,销售于一体的综合性专业生产企业,主要生产TDY75型电动滚筒,WD外装型电动滚筒等,广泛应用于冶金,矿山,起重,运输,石油,化工,建筑,输送,电力等行业.

安平县兆通五金网业有限公司

安平县兆通五金网业有限公司汽液过滤网,气夜过滤网,丝网垫片垫圈,不锈钢过滤网,不锈钢筛网,不锈钢丝网,不锈钢过滤网筒,订购热线:0318-7061858,18631877888!

律树智造

律树智造云管理系统,专为制造业定制,融合ERP、MES和OA,注册即用、操作灵活、成本低廉、现场服务。助您高效管理进销存、生产、委外、财务账,电脑手机全覆盖,订单流转、排产高效。

厦门会展思尔福

厦门会展思尔福是全国领先的预制菜产业平台综合运营商,致力于为餐饮预制菜产业,预制菜展,水产品预制菜,从业者提供专业的媒体资讯及营销,供需精准对接,企业学习培训,线下会议展览等服务

郴州市久通矿山设备有限公司

郴州市久通矿山设备有限公司,其前身为湘南矿斗厂。主要以生产矿车、打砂机磁选机、翻斗式矿车及其配件为主,是湘南地区较大的矿车专业生产厂。产品远销湖南、江西、广东、广西、云南、新疆内蒙等,矿山资源大省。电话:13807356312

广西旅行社

广西遇见旅行社提供广西旅行社服务以及广西旅游、德天瀑布旅游、北海旅游和涠洲岛旅游服务。我们是一家专业的旅行社,致力于为您提供满意的旅游体验。

全局底部横幅